Skip to main content

10 Class Science Chapter 3 धातु एवं अधातु notes in hindi

  Class 10 science Chapter 3 धातु एवं अधातु Notes in hindi  Chapter = 3   धातु एवं अधातु  वर्तमान में  118 तत्व  ज्ञात हैं । इनमें  90 से अधिक धातुऐं  ,  22 अधातुऐं और कुछ उपधातु  हैं ।  धातु :-  पदार्थ जो कठोर , चमकीले , आघातवर्ध्य , तन्य , ध्वानिक और ऊष्मा तथा विद्युत के सुचालक होते हैं , धातु कहलाते हैं ।  जैसे :-  सोडियम ( Na ) , पोटाशियम ( K ) , मैग्नीशियम ( Mg ) , लोहा ( Fc ) , एलूमिनियम ( AI ) , कैल्शियम ( Ca ) , बेरियम ( Ba ) धातुऐं हैं ।  धातुओं के उपयोग :-   धातुओं का उपयोग इमारत , पुल , रेल पटरी को बनाने में , हवाईजहाज , समुद्री जहाज , गाड़ियों के निर्माण में , घर में उपयोग होने वाले बर्तन , आभूषण , मशीन के पुर्जे आदि के निर्माण में किया जाता है ।  अधातु :- जो पदार्थ नरम , मलिन , भंगुर , ऊष्मा तथा विद्युत के कुचालक होते हैं , एवं जो ध्वानिक नहीं होते हैं अधातु कहलाते हैं ।  जैसे :-  ऑक्सजीन ( O ) , हाइड्रोजन ( H ) , नाइट्रोजन ( N ) , सल्फर ( S ) , फास्फोरस ( P ) , फ्लूओरीन...

10 Class Science Chapter 10 प्रकाश – परावर्तन तथा अपवर्तन notes in hindi

 

Class 10 science Chapter 10 प्रकाश – परावर्तन तथा अपवर्तन Notes in hindi

📚 Chapter = 10 📚
💠 प्रकाश – परावर्तन तथा अपवर्तन💠

❇️ प्रकाश :-

🔹 प्रकाश ऊर्जा का एक रूप है , जिसकी मदद से हम किसी भी वस्तु को देख पाते हैं , प्रकाश कहलाता है ।

❇️ प्रकाश के गुण :-

प्रकाश सरल ( सीधी ) रेखाओं में गमन करता है ।

प्रकाश विद्युत चुंबकीय तरंग है इसलिए इसे संचरण के लिए माध्यम की आवश्यकता नहीं पड़ती । 

प्रकाश अपारदर्शी वस्तुओं की तीक्ष्ण छाया बनाता है ।

प्रकाश की चाल निर्वात में सबसे अधिक है : 3 × 10⁸ m/s 

❇️ प्रकाश का परावर्तन :-

🔹 जब प्रकाश – किरण किसी माध्यम से चलती हुई किसी चमकदार तल पर आपतित होती है तो वह तल से टकरा कर उसी माध्यम में वापस लौट आती है । यह प्रकाश का परावर्तन कहलाता है । जैसे :- प्रकाश का किसी दर्पण से टकराकर वापिस उसी माध्यम में वापस लौटना ।

❇️ प्रकाश के परावर्तन के नियम :-

🔹 प्रकाश के परावर्तन के निम्नलिखित दो नियम हैं :-

🔶 प्रथम नियम :- तल के अभिलंब एवं आपतित किरण के बीच बना कोण तथा परावर्तित किरण एवं तल के अभिलंब के बीच बना कोण बराबर होते हैं , अर्थात्

आपतन कोण < i = परावर्तन कोण < r 

🔶 द्वितीय नियम :- आपतित किरण , अभिलंब तथा परावर्तित किरण सभी एक ही तल में होते हैं । इस प्रकार के तल को आपतन तल कहते हैं ।

❇️ प्रतिबिंब :-

🔹 प्रतिबिंब वहाँ बनता है जिस बिंदु पर कम से दो परावर्तित किरणें प्रतिच्छेदित होती हैं या प्रतिच्छेदित प्रतीत होती हैं ।

❇️ प्रतिबिंब के प्रकार :-

🔹 प्रतिबिम्ब की प्रकृति दो प्रकार का होता है :-

  1. वास्तविक प्रतिबिंब 
  2. आभासी प्रतिबिंब

❇️ वास्तविक प्रतिबिंब :-

  • यह तब बनता है जब प्रकाश की किरणें वास्तव में प्रतिच्छेदित होती हैं । 
  • इसे परदे पर प्राप्त कर सकते हैं । 
  • वास्तविक प्रतिबिंब उल्टा बनता है ।

❇️ आभासी प्रतिबिंब :-

  • यह तब बनता है जब प्रकाश की किरणें प्रतिच्छेदित होती प्रतीत होती हैं ।
  • इसे परदे पर प्राप्त नहीं कर सकते । 
  • आभासी प्रतिबिंब सीधा बनता है ।

❇️ समतल दर्पण द्वारा प्राप्त प्रतिबिंब :-

  • आभासी एवं सीधा होता है । 
  • प्रतिबिंब का आकार वस्तु के आकार के बराबर होता है । 
  • प्रतिबिंब दर्पण के उतने पीछे बनता है जितनी वस्तु की दर्पण से दूरी होती है । 
  • प्रतिबिंब पार्श्व परिवर्तित होता है । 

❇️ पार्श्व उत्क्रमण :-

🔹 जब हम अपना प्रतिबिंब समतल दर्पण में देखते हैं तो हमारा दायाँ हाथ प्रतिबिंब का बायाँ हाथ दिखाई पड़ता है तथा हमारा बायाँ हाथ प्रतिबिंब का दायाँ हाथ दिखाई पड़ता है इस प्रकार वस्तु के प्रतिबिंब में पार्श्व बदल जाते हैं । इस घटना को पार्श्व उत्क्रमण कहते हैं ।

❇️ पार्श्व परिवर्तन :-

🔹  इसमें वस्तु का दायां भाग बायां प्रतीत होता है और बायां भाग दायां ।

❇️ गोलीय दर्पण :-

🔹 ऐसे दर्पण जिनका परावर्तक पृष्ठ गोलीय है , गोलीय दर्पण कहलाते हैं ।

❇️ गोलीय दर्पण के प्रकार :-

🔹 गोलीय दर्पण दो प्रकार के होते हैं :-

  • अवतल दर्पण
  • उत्तल दर्पण

🔶 अवतल दर्पण :- वह गोलीय दर्पण जिसका परावर्तक पृष्ठ अंदर की ओर अर्थात गोले के केंद्र की ओर वक्रित है , वह अवतल दर्पण कहलाता है । 

🔶 उत्तल दर्पण :- वह गोलीय दर्पण जिसका परावर्तक पृष्ठ बाहर की ओर वक्रित है , उत्तल दर्पण कहलाता है । 

❇️ अवतल दर्पण के उपयोग :-

बड़ी फोकस दूरी तथा बड़े द्वारक का अवतल दर्पण दाढ़ी बनाने के काम आता है । मनुष्य अपने चेहरे को दर्पण के ध्रुव तथा फोकस के बीच में रखता है जिससे चेहरे का सीधा व बड़ा आभासी प्रतिबिंब दर्पण में दिखाई देने लगता है ।

डॉक्टर प्रकाश की किरणें छोटे अवतल दर्पण से परावर्तित करके आँख , दाँत , नाक , कान , गले इत्यादि में डालते हैं । इससे ये अंग भली – भाँति प्रकाशित हो जाते हैं । 

अवतल दर्पणों का उपयोग टेबिल लैम्पों की शेडों में किया जाता है । जिससे प्रकाश दर्पण से होकर अभिसारी हो जाता है और क्षेत्र को अधिक प्रकाश पहुँचाता हैं ।

अवतल दर्पणों का उपयोग मोटरकारों , रेलवे इंजनों में तथा सर्च लाइट के लैम्पों में परावर्तक के रूप में होता है । लैम्प दर्पण के मुख्य फोकस पर होता है । अतः परावर्तन के पश्चात् प्रकाश एक समांतर किरण- पुँज के रूप में आगे बढ़ता है ।

❇️ उत्तल दर्पण के उपयोग :- 

उत्तल दर्पण का उपयोग गली तथा बाजारों में लगे लैम्पों के ऊपर किया जाता है । प्रकाश दर्पण से परावर्तित होकर अपसारी किरण- पुँज के रूप में चलता है और अधिक क्षेत्र में फैल जाता है ।

उत्तल दर्पण मोटरकारों में ड्राइवर की सीट के पास लगा रहता है । इसमें ड्राइवर पीछे से आने वाले व्यक्तियों व गाड़ियों के प्रतिबिंब देख सकता है । ये उत्तल दर्पण बहुत बड़े क्षेत्र में फैली वस्तुओं के प्रतिबिंब आकार में छोटे तथा सीधे दिखते हैं ।

❇️ गोलीय दर्पण में सामान्यतः प्रयुक्त होने वाले कुछ शब्द :-

नोट :- ये शब्द गोलीय दर्पणों के बारे में चर्चा करते समय सामान्यतः प्रयोग में आते हैं । 

🔶 ध्रुव :- गोलीय दर्पण के परावर्तक पृष्ठ के केंद्र को दर्पण का ध्रुव कहते हैं । यह दर्पण के पृष्ठ पर स्थित होता है । ध्रुव की प्राय : P अक्षर से निरूपिात करते हैं । 

🔶 वक्रता केंद्र :- गोलीय दर्पण का परावर्तक पृष्ठ एक गोले का भाग है । इस गोले का केंद्र गोलीय दर्पण का वक्रता केंद्र कहलाता है । यह अक्षर C से निरूपित किया जाता है । 

🔶 वक्रता त्रिज्या :- गोलीय दर्पण का परावर्तक पृष्ठ जिस गोले का भाग है , उसकी त्रिज्या दर्पण की वक्रता त्रिज्या कहलाती है । इसे अक्षर R से निरूपित किया जाता है ।

🔶 मुख्य अक्ष :- गोलीय दर्पण के ध्रुव तथा वक्रता त्रिज्या से गुजरने वाली एक सीधी रेखा को मुख्य अक्ष कहते हैं । मुख्य अक्ष दर्पण के ध्रुव पर अभिलंब हैं ।

🔶 मुख्य फोकस :- मुख्य अक्ष पर वह बिंदु जहाँ मुख्य अक्ष के समांतर किरणें आकर मिलती हैं या परावर्तित किरणें मुख्य अक्ष पर एक बिंदु से आती हुई महसूस होती हैं वह बिंदु गोलीय दर्पण का मुख्य फोकस कहलाता है । 

🔶 अवतल दर्पण का मुख्य फोकस :- मुख्य अक्ष के समान्तर आपतित प्रकाश किरणें अवतल दर्पण द्वारा परावर्तन के पश्चात् जिस बिन्दु से होकर गुजरती है , उस बिन्दु को अवतल दर्पण का मुख्य फोकस कहते हैं ।

🔶 उत्तल दर्पण का मुख्य फोकस :- उत्तल दर्पण द्वारा मुख्य अक्ष के समांतर परावर्तित किरणें मुख्य अक्ष पर एक बिंदु से आती हैं । यह बिंदु उत्तल दर्पण का मुख्य फोकस कहलाता है ।

🔶 फोकस दूरी :- गोलीय दर्पण के ध्रुव तथा मुख्य फोकस के मध्य की दूरी फोकस दूरी कहलाती है । इसे अक्षर F द्वारा निरूपित करते हैं । छोटे द्वारक के गोलीय दर्पणों के लिए वक्रता त्रिज्या फोकस दूरी से दुगुनी होती है । हम इस संबंध को R = 2F द्वारा व्यक्त करते हैं ।

🔶 द्वारक :- गोलीय दर्पण के परावर्तक पृष्ठतल की वृत्ताकार सीमारेखा का व्यास दर्पण का द्वारक कहलाता है । इसे MN से दर्शाया जाता है । 

❇️ गोलीय दर्पणों में प्रतिबिंब बनाने के निम्नलिखित नियम :-

1 . गोलीय दर्पण पर , जब मुख्य अक्ष के समांतर प्रकाश किरण आपतित होती है , तो वह परावर्तित होकर मुख्य फोकस ( अवतल दर्पण ) से होकर जाती हैं या मुख्य फोकस से होकर आती हुई प्रतीत उत्तल दर्पण में होती है ।

2 . जब मुख्य फोकस में से होकर जाने वाली ( अवतल दर्पण ) अथवा मुख्य फोकस बिंदु की ओर जाने वाली किरण ( उत्तल दर्पण ) दर्पण पर आपतित होती है , तब वह परावर्तित होकर मुख्य अक्ष के समांतर हो जाती है । 

3 . जब वक्रता केंद्र में से होकर जाने वाली ( अवतल दर्पण ) या वक्रता केंद्र की ओर जाने वाली ( उत्तल दर्पण ) किरण दर्पण पर आपतित होती है , तब वह परावर्तित होकर अपने मार्ग पर ही वापस लौट जाती है ।

4 . उत्तल दर्पण के बिंदु P की ओर मुख्य अक्ष से तिर्यक दिशा में आपतित किरण तिर्यक दिशा में ही परावर्तित होती है । आपतित तथा परावर्तित किरणें आपतन बिंदु पर मुख्य अक्ष से समान कोण बनाती है ।

❇️ उत्तल दर्पण द्वारा बने प्रतिबिंब की विशेषताएँ  :-

  • प्रतिबिंब सदैव दर्पण के पीछे बनता है । 
  • दर्पण के ध्रुव तथा फोकस के बीच बनता है । 
  • सीधा तथा आभासी होता है । 
  • वस्तु के आकार से छोटा होता है ।

❇️ गोलीय दर्पणों द्वारा परावर्तन के लिए चिह्न परिपाटी :-

🔶 चिह्न परिपाटी :- प्रकाश में दर्पण से वस्तु की दूरी ( u ) , दर्पण से प्रतिबिंब की दूरी ( v ) , फोकस दूरी ( f ) आदि को उचित चिह्न देते हैं । इसके लिए निर्देशांक ज्यामिति की परिपाटी अपनाई जाती है , जो निम्न प्रकार से हैं :-

बिंब हमेशा दर्पण के बाईं ओर रखा जाता है । इसका अर्थ है कि दर्पण पर बिंब से प्रकाश बाईं ओर से आपतित होता है ।

मुख्य अक्ष के समांतर सभी दूरियाँ दर्पण के ध्रुव से मापी जाती हैं । 

मूल बिंदु के दाईं ओर ( + x – अक्ष के अनुदिश ) मापी गई सभी दूरियाँ धनात्मक मानी जाती हैं जबकि मूल बिंदु के बाईं ओर ( – x – अक्ष के अनुदिश ) मापी गई दूरियाँ ऋणात्मक मानी जाती हैं । 

मुख्य अक्ष के लंबवत तथा ऊपर की ओर ( + y – अक्ष के अनुदिश ) मापी जाने वाली दूरियाँ धनात्मक मानी जाती हैं । 

मुख्य अक्ष के लंबवत तथा नीचे की ओर ( – y – अक्ष के अनुदिश ) मापी जाने वाली दूरियाँ ऋणात्मक मानी जाती हैं ।

🔶 इन नियमों के अनुसार :-

  • बिंब की दूरी ( u ) हमेशा ऋणात्मक होती है । 
  • अवतल दर्पण की फोकस दूरी हमेशा ऋणात्मक होती है । 
  • उत्तल दर्पण की फोकस दूरी हमेशा धनात्मक होती है ।

❇️ दर्पण सूत्र :- 

  • 1/v + 1/u = 1/f
  • v = प्रतिबिंब की दूरी
  • u = बिंब की दूरी 
  • f = फोकस दूरी 

🔹 गोलीय दर्पण में इसके ध्रुव से बिंब की दूरी , बिंब दूरी ( u ) कहलाती है । दर्पण के ध्रुव से प्रतिबिंब की दूरी , प्रतिबिंब दूरी ( v ) कहलाती है । ध्रुव से मुख्य फोकस की दूरी , फोकस दूरी ( f कहलाती है । 

❇️ आवर्धन :-

🔹 गोलीय दर्पण द्वारा उत्पन्न वह आपेक्षिक विस्तार है जिससे ज्ञान होता है कि कोई प्रतिबिंब बिंब की अपेक्षा कितना गुना आवर्धित है , इसे प्रतिबिंब की ऊँचाई तथा बिंब की ऊँचाई के अनुपात रूप में व्यक्त किया जाता है ।

🔹m = प्रतिबिं की ऊँचाई ( h’ ) / बिंब की ऊंचाई ( h₀ )

🔹 m = hi/h₀

  • यदि ‘ m ‘ ऋणात्मक है तो प्रतिबिंब वास्तविक होता है ।
  • यदि ‘ m ‘ धनात्मक है तो प्रतिबिंब आभासी बनता है । 
  • यदि hi = h₀ तो m = 1 – प्रतिबिंब का आकार बिंब के बराबर है । 
  • यदि hi > h₀ तो m > 1 – प्रतिबिंब बिंब से बड़ा होता है ।
  • यदि hi < h₀ तो m < 1- प्रतिबिंब बिंब से छोटा होता है । 
  • समतल दर्पण का आवर्धन सदैव +1 होता है ( + ) साइन आभासी प्रतिबिंब दर्शाता है । ( 1 ) दर्शाता है कि प्रतिबिंब का आकार बिंब के आकार के बराबर है । 

❇️ प्रकाश का अपवर्तन :- 

🔹 जब प्रकाश एक माध्यम से दूसरे माध्यम में तिरछा होकर जाता है तो दूसरे माध्यम में इसके संचरण की दिशा परिवर्तित हो जाती है । इस परिघटना को प्रकाश अपवर्तन कहते हैं ।

❇️ प्रकाश- अपवर्तन के कुछ उदाहरण :-

प्रकाश के अपवर्तन के कारण स्विमिंग पूल का तल वास्तविक स्थिति से विस्थापित हुआ प्रतीत होता है । 

पानी में आंशिक रूप से डूबी हुई पेंसिल वायु तथा पानी के अन्तरपृष्ठ पर टेढ़ी प्रतीत होती है । 

काँच के गिलास में पड़े नीबू वास्तविक आकार से बड़े प्रतीत होते हैं । 

कागज पर लिखे शब्द गिलास स्लैब से देखने पर ऊपर उठे हुए प्रतीत होते हैं ।

❇️ प्रकाश – अपवर्तन के दो नियम :-

  1. आपतित किरण अपवर्तित किरण तथा दोनों माध्यमों को पृथक करने वाले पृष्ठ के आपतन बिंदु पर अभिलंब सभी एक ही तल में होते हैं । 
  2. प्रकाश के किसी निश्चित रंग तथा निश्चित माध्यमों के युग्म के लिए आपतन कोण की ज्या ( sine ) तथा अपवर्तन कोण की ज्या ( sine ) का अनुपात स्थिर होता है । इस नियम को स्नेल का अपवर्तन का नियम भी कहते हैं ।

❇️ अपवर्तनांक :-

🔹 किन्हीं दिए हुए माध्यमों के युग्म के लिए होने वाले दिशा परिवर्तन के विस्तार को अपवर्तनांक के रूप में भी व्यक्त किया जा सकता है ।

❇️ निरपेक्ष अपवर्तनांक :-

🔹 यदि माध्यम -1 निर्वात या वायु है , तब माध्यम 2 का अपवर्तनांक निर्वात के सापेक्ष माना जाता है । यह माध्यम का निरपेक्ष अपवर्तनांक कहलाता है । 

  • N = c/v
  • C = 3 × 10⁸MS⁻¹ 
  • हीरे का अपवर्तनांक सबसे अधिक है । हीरे का अपवर्तनांक 242 है इसका तात्पर्य यह है कि प्रकाश की चाल 1/242 गुणा कम है हीरे में निर्वात की अपेक्षा । 

❇️ प्रकाशिक सघन माध्यम :-

🔹 दो माध्यमों की तुलना करते समय अधिक अपवर्तनांक वाला माध्यम दूसरे की अपेक्षा प्रकाशिक सघन होता है । 

🔹उदहारण :- जब प्रकाश की किरण विरल माध्यम से सघन माध्यम में जाती है तो उसकी चाल धीमी हो जाती है तथा अभिलंब की ओर झुक जाती है ।

❇️ प्रकाशिक विरल माध्यम :-

🔹 दो माध्यमों की तुलना करते समय कम अपवर्तनांक वाला माध्यम प्रकाशिक विरल माध्यम है । 

🔹 उदहारण :- जब प्रकाश की किरण सघन माध्यम से विरल माध्यम में जाती है तो इसकी चाल बढ़ जाती है तथा ये अभिलंब से दूर हट जाती है ।

❇️ लेंस :-

🔹 दो तलों से घिरा हुआ कोई पारदर्शी माध्यम जिसका एक या दोनों तल गोलीय है , लेंस कहलाता है ।

❇️ लेंस दो प्रकार के होते हैं :-

  1. उत्तल लेंस 
  2. अवतल लेंस 

🔶  उत्तल लेंस :- यह बीच में मोटा और किनारों पर पतला होता है तथा दोनों पृष्ठों की वक्रता त्रिज्या बराबर होती है । यह किरण पुंज को अभिसरित करता है , इसलिए इसे अभिसारी लेंस भी कहते हैं । 

🔶 अवतल लेंस :- यह बीच में पतला व किनारों पर मोटा होता है । साधारणतया इसके दोनों पृष्ठों की वक्रता त्रिज्याएँ बराबर होती हैं । यह किरण पुंज को अपसरित करता है , इसलिए इसे अपसारी लेंस भी कहते हैं ।

❇️ लेंस में सामान्यतः प्रयुक्त होने वाले कुछ शब्द :-

नोट :- ये शब्द लेंस के बारे में चर्चा करते समय सामान्यतः प्रयोग में आते हैं । 

🔶 वक्रता केंद्र :- किसी लेंस में चाहे वह उत्तल हो अथवा अवतल , दो गोलीय पृष्ठ होते हैं । इनमें से प्रत्येक पृष्ठ एक गोले का भाग होता है । इन गोलों के केंद्र लेंस के वक्रता केंद्र कहलाते हैं । लेंस का वक्रता केंद्र प्रायः अक्षर C द्वारा निरूपित किया जाता है ।

🔶 मुख्य अक्ष :- किसी लेंस के दोनों वक्रता केंद्रों से गुजरने वाली एक काल्पनिक सीधी रेखा लेंस की मुख्य अक्ष कहलाती है । 

🔶 प्रकाशिक केंद्र :- लेंस का केंद्रीय बिंदु इसका प्रकाशिक केंद्र कहलाता है । इसे प्रायः अक्षर O से निरूपित करते हैं । लेंस के प्रकाशिक केंद्र से गुजरने वाली प्रकाश किरण बिना किसी विचलन के निर्गत होती है । 

🔶 द्वारक :- गोलीय लेंस की वृत्ताकार रूपरेखा का प्रभावी व्यास इसका द्वारक कहलाता है । 

🔶 पतले लेंस :- जिनका द्वारक इनकी वक्रता त्रिज्या से बहुत छोटा है और दोनों वक्रता केंद्र प्रकाशिक केंद्र से समान दूरी पर होते हैं । ऐसे लेंस छोटे द्वारक के पतले लेंस कहलाते हैं ।

🔶 लेंस का मुख्य फोकस :- उत्तल लेंस पर मुख्य अक्ष के समांतर प्रकाश की बहुत सी किरणें आपतित हैं । ये किरणें लेंस से अपवर्तन के पश्चात मुख्य अक्ष पर एक बिंदु पर अभिसरित हो जाती हैं । मुख्य अक्ष पर यह बिंदु लेंस का मुख्य फोकस कहलाता है । 

🔶 अवतल लेंस का मुख्य फोकस :- अवतल लेंस पर मुख्य अक्ष के समांतर प्रकाश की अनेक किरणें आपतित होती है । ये किरणें लेंस से अपवर्तन के पश्चात मुख्य अक्ष के एक बिंदु से अपसरित होती प्रतीत होती हैं । मुख्य अक्ष पर यह बिंदु अवतल लेंस का मुख्य फोकस कहलाता है ।

🔶 फोकस दूरी :- किसी लेंस के मुख्य फोकस की प्रकाशिक केंद्र से दूरी फोकस दूरी कहलाती है । फोकस दूरी को अक्षर ‘ f ‘ द्वारा निरूपित किया जाता है ।

❇️ लेंस द्वारा प्रतिबिंब बनाने के नियम :-

🔹 किसी वस्तु का लेंस द्वारा प्रतिबिंब बनाने के लिए निम्नलिखित नियम हैं :- 

  1. लेंस के प्रथम फोकस से होकर जाने वाली ( उत्तल लेंस में ) किरण या प्रथम फोकस की ओर जाती प्रतीत होने वाली ( अवतल लेंस में ) किरण लेंस से निकलने पर मुख्य अक्ष के समांतर हो जाती है । 
  2. लेंस की मुख्य अक्ष के समांतर चलने वाली किरण लेंस से निकल कर द्वितीय फोकस से या तो होकर जाती है ( उत्तल लेंस में ) अथवा द्वितीय फोकस से आती हुई प्रतीत होती है ( अवतल लेंस में )
  3. लेंस के प्रकाशीय केंद्र से होकर जाने वाली किरण अपवर्तन के पश्चात् बिना किसी विचलन के सीधी निकल जाती है ।

❇️ लेंस के लिए चिह्न परिपाटी व प्रतिबिंब बनाने के नियम :-

🔶 चिह्न परिपाटी :- दर्पणों में बताई गई निर्देशांक ज्यामिति की चिह्न परिपाटी लेंस में भी लागु होती है । इसके अनुसार , :- 

  • किरण आरेख बनाते समय लेंस पर प्रकाश किरणें सदैव बाईं ओर से डाली जाती हैं । 
  • लेंस में सभी दूरियाँ प्रकाशिक केंद्र से मुख्य अक्ष के साथ नापी जाती हैं । 
  • आपतित किरण की दिशा में नापी गई दूरियाँ धनात्मक तथा आपतित किरण के विपरीत दिशा में नापी हुई दूरियाँ ऋणात्मक ली जाती हैं ; जैसे- उत्तल लेंस की फोकस दूरी f धनात्मक और अवतल लेंस की फोकस दूरी ऋणात्मक लेते हैं । 
  • मुख्य अक्ष के ऊपर वस्तु तथा प्रतिबिंब की लंबाइयाँ धनात्मक तथा अक्ष से नीचे की ओर इनकी लंबाइयाँ ऋणात्मक लेते हैं ।

❇️ लेंस सूत्र :-

🔹 लेंस सूत्र बिंब दूरी ( u ) , प्रतिबिंब दूरी ( v ) तथा फोकस दूरी ( f ) के बीच संबंध प्रदान करता है । लेंस सूत्र व्यक्त किया जाता है :- 

1/v + 1/u = 1/f

🔹 उपरोक्त लेंस सूत्र व्यापक है तथा किसी भी गोलीय लेंस के लिए , सभी स्थितियों मान्य है । 

❇️ आवर्धन :-

🔹 किसी लेंस द्वारा उत्पन्न आवर्धन , किसी गोलीय दर्पण द्वारा उत्पन्न आवर्धन की ही भाँति प्रतिबिंब की ऊँचाई तथा बिंब की ऊँचाई के अनुपात के रूप में परिभाषित किया जाता है । 

🔹 आवर्धन को अक्षर m द्वारा निरूपित किया जाता है । यदि बिंब की ऊँचाई h हो तथा लेंस द्वारा बनाए गए प्रतिबिंब की ऊँचाई h ‘ हो , तब लेंस द्वारा उत्पन्न आवर्धन प्राप्त होगाः

  • m = प्रतिबिं की ऊँचाई ( h’ ) / बिंब की ऊंचाई ( h₀ )
  • m = v/u 
  • m = hi/h₀ = v/u

❇️ लेंस की क्षमता :-

🔹 किसी लेंस द्वारा प्रकाश किरणों को अभिसरण या अपसरण करने की मात्रा को उसकी क्षमता के रूप में व्यक्त किया जाता है । लेंस की क्षमता उसकी फोकस दूरी का व्युत्क्रम होती है ।

🔹 लेंस की क्षमता P = 1/f

🔹 लेंस की क्षमता का मात्रक ( डाइऑप्टर ) ( D ) है । 1D = 1m⁻¹

  • डाइऑप्टर उस लेंस की क्षमता है जिसकी फोकस दूरी 1 मीटर हो । 
  • उत्तल लेंस की क्षमता धनात्मक होती है । ( + ve ) 
  • अवतल लेंस की क्षमता ऋणात्मक होती है । ( – ve ) 

🔹 अनेक प्रकाशिक यंत्रों में कई लेंस लगे होते हैं । उन्हें प्रतिबिंब को अधिक आवर्धित तथा सुस्पष्ट बनाने के लिए संयोजित किया जाता है । सम्पर्क में रखे लेंसों की कुल क्षमता ( P ) उन लेंसों की पृथक – पृथक क्षमताओं का बीजगणितीय योग होती है । 

P = P1 + P2 + P3 + ………..

Comments

Popular posts from this blog

Class 10 science Chapter 4 कार्बन एवं उसके यौगिक Notes in Hindi

10 Class Science Chapter 4 कार्बन एवं उसके यौगिक notes in Hindi Textbook NCERT Class Class 10 Subject विज्ञान Chapter Chapter 4 Chapter Name कार्बन एवं उसके यौगिक Category Class 10 Science Notes Medium Hindi Class 10 science Chapter 4 कार्बन एवं उसके यौगिक Notes in hindi  Chapter = 4   कार्बन एवं उसके यौगिक  कार्बन :-  कार्बन एक सर्वतोमुखी तत्व है । कार्बन भूपर्पटी में खनिज के रूप में 0.02% उपस्थित है । वायुमंडल में यह कार्बन डाइऑक्साइड के रूप में 0.03% उपस्थित है । सभी सजीव संरचनायें कार्बन पर आधरित हैं । कागज , प्लास्टिक , चमड़े और रबड़ में कार्बन होता है ।  कार्बन एवं उसके यौगिकों का उपयोग :-  कार्बन एवं उसके यौगिकों का उपयोग अधिकतर अनुप्रयोगों में ईंधन के रूप में किया जाता है क्योंकि कार्बन के ऑक्सीजन ( वायु ) में दहन पर कार्बन डाइऑक्साइड जल का निर्माण होता है तथा बहुत बड़ी मात्रा में ऊष्मा और प्रकाश उत्पन्न होता है ।   इसके अतिरिक्त इनका ज्वलन ताप मध्यम , कैलोरी मान अधिक होता है तथा इनके दहन से कोई अवशेष नहीं बचता और न ही हानिकारक गैसें ...

Class 10 History Chapter 1 यूरोप में राष्ट्रवाद का उदय

                    Class 10 History Chapter 1 यूरोप में राष्ट्रवाद का उदय Notes in Hindi                                                                                                         अध्याय = 1                                                                       यूरोप में राष्ट्रवाद का उदय           राष्ट्र :- अरनेस्ट रेनर के अनुसार समान भाषा नस्ल धर्म से बने क्षेत्र को राष्ट्र कहते हैं ।  ए...

10 Class Science Chapter 3 धातु एवं अधातु notes in hindi

  Class 10 science Chapter 3 धातु एवं अधातु Notes in hindi  Chapter = 3   धातु एवं अधातु  वर्तमान में  118 तत्व  ज्ञात हैं । इनमें  90 से अधिक धातुऐं  ,  22 अधातुऐं और कुछ उपधातु  हैं ।  धातु :-  पदार्थ जो कठोर , चमकीले , आघातवर्ध्य , तन्य , ध्वानिक और ऊष्मा तथा विद्युत के सुचालक होते हैं , धातु कहलाते हैं ।  जैसे :-  सोडियम ( Na ) , पोटाशियम ( K ) , मैग्नीशियम ( Mg ) , लोहा ( Fc ) , एलूमिनियम ( AI ) , कैल्शियम ( Ca ) , बेरियम ( Ba ) धातुऐं हैं ।  धातुओं के उपयोग :-   धातुओं का उपयोग इमारत , पुल , रेल पटरी को बनाने में , हवाईजहाज , समुद्री जहाज , गाड़ियों के निर्माण में , घर में उपयोग होने वाले बर्तन , आभूषण , मशीन के पुर्जे आदि के निर्माण में किया जाता है ।  अधातु :- जो पदार्थ नरम , मलिन , भंगुर , ऊष्मा तथा विद्युत के कुचालक होते हैं , एवं जो ध्वानिक नहीं होते हैं अधातु कहलाते हैं ।  जैसे :-  ऑक्सजीन ( O ) , हाइड्रोजन ( H ) , नाइट्रोजन ( N ) , सल्फर ( S ) , फास्फोरस ( P ) , फ्लूओरीन...